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Using Cognitive Models to Map Relations between Neuropsychological 

Disorders and Human Decision Making Deficits 

 

Abstract: 

Findings from a complex decision making task (the Iowa gambling task) show 

that individuals with neuropsychological disorders are characterized by decision making 

deficits, leading to maladaptive risk-taking behavior. The paper describes a cognitive 

model which distills the performance in this task into three different underlying 

psychological components: the first measures the relative impact of rewards and 

punishments on evaluations; the second estimates the rate that the contingent payoffs are 

learned; and the third determines the consistency between learning and responding. 

Findings from ten studies are organized by distilling the observed decision deficits into 

the three basic components, and locating the neuropsychological disorders in this 

component space. The results reveal a cluster of populations characterized by making 

risky choices despite high attention to losses, due to difficulties in creating “emotive 

patterns”. These findings demonstrate the contribution of cognitive models for building 

bridges between neuroscience and behavior.  
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The Iowa gambling task (Bechara, Damasio, Damasio & Anderson, 1994) is a 

popular method for investigating basic decision-making deficits of individuals with 

neuropsychological disorders. Performers in this task make a series of 100 choices from 

four decks of cards with the goal being to maximize their net payoff across trials (see 

Figure 1). Each card selection leads to monetary gains but may also lead to losses. The 

outcomes of each of the decks are not known to the decision makers before hand and 

must be learned from experience. Two of the decks are disadvantageous and risky in that 

they lead to relatively high gains ($100 each time) but also to occasional large losses (up 

to $1,250), which result in an average loss (-$25 per trial). The two other decks are 

advantageous, as they lead to lower gains each time (only $50 gains) but produce smaller 

losses, which result in an average gain (+$25 per trial).   

Initially, the task was found to be effective in differentiating individuals with 

bilateral damage to the VentroMedial Prefrontal Cortices (VMPC) from controls 

(Bechara et al., 1994). VMPC lesions are associated with a syndrome in which 

individuals have normal IQ and reasoning ability, but their decision-making behavior 

consists of excessive risk taking (Bechara et al., 1994; Damasio, 1994). This deficit was 

reflected in the Iowa gambling task by more choices from disadvantageous decks on the 

part of VMPC patients. Following the initial findings with VMPC patients, poor 

performance in the Iowa gambling task (persistence in the selection from 

disadvantageous decks) was also found in several other neuropsychological disorders, 

including lesions in the right somatosensory and insular cortex (Bechara, Tranel & 

Hindes, 1999), Huntington’s disease (Stout, Rodawalt & Siemers, 2001), chronic drug 

abuse (Bechara et al., 2001; Stout, Busemeyer, Lin, Grant& Bonson, 2004; Yechiam et 
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al., 2004) obsessive-compulsive disorder (Cavedini et al., 2002), and Asperger’s 

syndrome (Johnson et al., 2004).  

These results are usually interpreted as indicating that all of these disorders share 

a common decision making deficit. Yet it is possible that markedly different 

psychological processes lead to the same qualitative finding of poor performance in the 

gambling task. Theoretically, the decision making deficits observed in the Iowa gambling 

task can be broken down into three basic components: The first is a motivational factor, 

producing a tendency to be attracted by gains and to ignore losses; a second is a learning 

rate factor, producing a tendency to focus on recent events and forget or rapidly discount 

past losses; the third is a response factor, causing choices to be made erratically owing to 

factors such as loss of interest, boredom, or tiredness. Thus, to improve discriminability 

between different populations, the overt behavior in the Iowa gambling task must be 

distilled so as to reveal potential differences in more basic components. 

Busemeyer and Stout (2002) developed a cognitive model that could be used to 

sort out these different possible explanations. This mathematical model yields 

quantitative parameter estimates that provide a continuous mapping of populations along 

the three different psychological dimensions. Note that other models could lead to 

different implications and conclusions, but the present model captures the essential 

properties of most plausible attention and memory processing interpretations for the Iowa 

gambling task as well as similar repeated choice tasks (see e.g., Camerer & Ho, 1999;  

Erev & Roth, 1998; Weber, Shafir & Blais, 2004). 

This paper reviews a set of ten applications of the cognitive model to a wide 

variety of populations with neuropsychological disorders. The results show that poor 
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performance in the gambling task is associated with distinct psychological components 

across different neuropsychological disorders. 

The Expectancy-Valence model.    The cognitive model is comprised of three 

basic assumptions.  

Attention to losses vs. wins: The motivation parameter.  The first parameter of the 

model is a motivational parameter that represents the performers’ attention to gains and 

losses. On each trial, a deck is selected, and payoffs contingent on the selected deck are 

delivered. The decision maker is assumed to evaluate the immediate gains and losses 

experienced after making a choice by a prospect theory type utility function (Kahneman 

& Tversky, 1979). The valence of the payoffs experienced on trial t is denoted v(t), and it 

is calculated as a weighted average of gains and losses  option (or deck) in trial t: 

 

v(t) = W⋅win(t)  −  (1-W)⋅loss(t)      (1) 

 

Here win(t) is the amount of money won on trial t; loss(t) is the amount of money lost on 

trial t; and W is a parameter that indicate the weights to gains versus losses. The 

motivation parameter is limited from 0 and 1. Small values of the parameter denote 

attention to losses. Higher values denote increasing attention to gains, a tendency which 

can increase the preference for the high-gain disadvantageous decks. 

Updating expectations: The learning rate parameter. The second parameter of the 

model represents the attention to the most recent outcomes versus the attention to past 

outcomes. Performers are assumed to form expectancies for each deck, which represent 

the anticipated consequences of choosing a card from a deck. When a deck is chosen, the 



 6

expectancy Ej for deck j is updated as a function of its previous value (which reflects the 

past experience), as well as on the basis of newly experienced payoffs on the current trial, 

as follows: 

 

Ej(t) = Ej(t-1) + φ⋅ [v(t) – Ej(t-1)] (2) 

 

In other words, the new expectancy equals the previous expectancy plus an adjustment 

resulting from the prediction error [v(t)–Ej(t)]  (Rumelhart & McClelland, 1986; 

Busemeyer & Myung, 1992). The amount of adjustment is controlled by the learning 

parameter, φ. The parameter is limited from 0 to 1. Small parameter values produce more 

persistent influences across longer lags, and less discounting of past outcomes. Large 

values of φ produce rapid adjustments, strong recency effects, and rapid discounting of 

past outcomes. A tendency to select from the disadvantageous decks could be due to such 

rapid discounting because these decks produce infrequent losses.  

Choice consistency: The response sensitivity parameter. The decision maker's 

choice on each trial is based not only on the expectancies produced by each deck, but also 

on the consistency with which the decision maker applies those expectancies when 

making choices. According to the model, the probability of choosing a deck is 

determined by strength of that deck relative to the sum of the strengths of all decks: 
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The variable θ (t) controls the consistency between choices and the expectancies, and it is 

assumed to change with experience. Consistency is assumed to increase with experience, 

reflecting greater reliance of choice on one’s expectancies. This is formalized by a power 

function for the sensitivity change over trials: 

 

θ (t) = (t/10)c (4) 

 

where c is the response sensitivity parameter. When the value of the response sensitivity 

parameter is high, choices converge towards the deck with the maximum expectancy. 

When the value of c is low, choices become inconsistent, random, and independent of the 

expectancies over time. This erratic choice pattern is a third reason for performers not to 

learn to choose from advantageous decks. 

 Modeling analyses. The parameters of the model were optimized separately for 

each individual performer by maximizing the likelihood of the observed sequence of 100 

choices produced by an individual. Optimization is a process wherein the fit of the model 

(in log likelihood) is compared with the fit of a baseline model. The baseline model’s 

prediction is based on the optimized proportion of the choices of the different decks. 

Namely, the baseline model’s three parameters are the average choice proportions of 

decks A, B, and C (deck D’s is calculated accordingly). A comparison of the fit from the 

learning model to the baseline model is characterized by the improvement in the fit of the 

learning model over the baseline model. The statistical test of this improvement is G2, 

which is a model fit statistic analogous to the chi-square.   
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This analysis results in three parameter estimates for each individual: W which 

measures importance of gains versus losses; φ which measures rate of adjustment and 

recency effects; and c which measures the consistency between expectancies and choices. 

The distribution of parameter estimates from each neuropsychological group was 

summarized by computing the averages and standard deviations for each group. 

Corresponding to each neuropsychological group, data was obtained from a control 

group, matched on extraneous variables such as age, gender, and education. The 

differences between the neuropsychological group and corresponding control were then 

computed.  

Modeling results.  Figure 2 maps the different populations studied with the Iowa 

gambling task according to the difference in the parameters of the Expectancy-Valence 

learning model. Each mean difference score is located at the center of a circle, which is 

positioned along two dimensions. The horizontal dimension represents differences in the 

weight for gains relative to losses, and the vertical dimension represents differences in the 

learning rate parameter. The standard errors of the difference are denoted by a cross 

beginning at the center of each circle. The radius of the circle represents differences in 

the response sensitivity parameter.  In the bottom right side of the figure appear the 

results of the modeling comparison (to the baseline model) and significance tests for 

parameter differences.  

Two samples of young and relatively high-functioning adult drug abusers 

(Yechiam, Stout, Busemeyer, Rock & Finn, in press) and alcoholics (Mazas, Finn & 

Steinmetz, 2000) show very similar parameter values to controls.  
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The top right side of the figure denotes a cluster of populations that are high either 

in attention to gains or in recency compared to controls. Some populations in this cluster 

are characterized by behavior that focuses on gains and discounts potential losses, and 

also discounts past outcomes more rapidly. Among the most extreme populations in this 

group are chronic (5+ years) cocaine abusers (Stout et al., 2004) and cannabis abusers 

(Yechiam et al., 2004). Note that both populations abstained from drugs prior to the 

experiment. Cocaine abusers show more attention to gains while cannabis abusers exhibit 

more recency. The results of Huntington’s patients with an average of four years since 

diagnosis (Busemeyer & Stout, 2002) reflect a relative greater weighting to gains and 

high attention to the most recent trials (although not significantly so).  

The results of normal seniors between the age of 65 to 88 (average age 77) show 

significantly higher attention to gains than control participants between 18 to 34 years old 

(Wood, Busemeyer, Koling, Cox & Davis, in press)1. However, they also show higher 

sensitivity than controls (denoted by the larger size of the bubble compared to the 

surrounding red circle). Finally, patients with bilateral damage to the VMPC (Bechara et 

al., 1994) show a significant increase in recency and also display an erratic choice 

pattern. The finding that the main difference between VMPC patients and controls is in 

the learning rate parameter fits well with recent results showing that in decision tasks that 

involve no learning (i.e., description based tasks) the differences between VMPC patients 

and controls disappear (Leland & Grafman, in press). 

As a stark contrast to this first cluster, there are three populations at the left hand 

side of the figure whose decision making style is characterized mostly by high attention 

                                                 
1 Note that these results differ somewhat from Wood et al.’s (in press) analysis. The present study uses a 
three parameter model which was found to be more robust (see Yechiam, Veinott, Busemeyer & Stout, in 
press).   
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to losses. The first such population is Parkinson’s patients (whose average age was 66, 

with an average of eight years following diagnosis; Busemeyer & Stout, 2002). This is 

consistant with previous studies showing that Parkinson’s patients score high on harm 

avoidance tests (Kaasinen et al., 2001), and also with the curious finding that individuals 

who do not smoke regularly have been found to be more prone to have Parkinson’s 

disease (Louis, Luchsinger, Tang & Mayeux, 2003). Two populations in the second 

cluster display sensitivity to losses coupled with erratic choices: individuals with lesions 

in the right somatosensory and insular cortex (RSIC; Bechara et al., 1999) and 

adolescents with Asperger’s syndrome (Johnson et al., 2004). Potentially, extremely low 

sensitivity can lead to disadvantageous choices despite high attention to losses due to 

continuous rejection of advantageous alternatives (which also contain small losses). This 

is consistant with the trial-to-trial pattern of behavior in both these populations syndrome, 

which is characterized by an extreme tendency to shift and change their prior choices 

(Johnson et al., 2004).  

The findings that chronic drug abusers in the first cluster demonstrate a 

motivational bias for immediate gains is consistant with theories of the behavior of drug 

abusers in choice tasks (see reviews in Finn, 2002; Gorenstein & Newman, 1980), which 

postulate that for drug abusers, signals of positive reward may carry larger weight over 

signals of potential risk due to stronger appetitive processes and weaker disinhibitory 

mechanisms. 

The first cluster showing that both VMPC patients and chronic drug abusers 

demonstrate a degree of “myopia” for distant consequences is consistent with prior 

observations (Bechara et al., 1994; Bechara et al., 1999; Damasio, 1994). Huntington’s 
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patients also belong to this cluster. Given the close anatomical and functional links 

between the striatum and prefrontal cortex, finding similar decision-making profiles in 

Huntington’s and VMPC patients is not surprising. In addition, the findings of high 

recency in drug abusers and Huntington’s patients can be due to a memory deficit. The 

relative increase in recency in chronic cannabis abusers (as compared to cocaine abusers) 

is consistant with the known effect of cannabis abuse on cannabinoids, which have 

regional binding specificity within the caudate nucleus and putamen, and within the 

hippocampus, brain areas important in memory (Bolla, Brown, Eldreth, Tate & Cadet, 

2002). Huntington’s patients are likewise known to have memory impairments (see e.g., 

Huber & Paulson, 1987; Stout et al., 2001).  

The second cluster shows that patients with right somatosensory and insular 

lesions and individuals with Asperger’s syndrome show low attention to gains (or pay 

relatively more attention to losses), but most importantly, they have a pronounced erratic 

choice pattern (i.e., low sensitivity parameter). This is consistent with the notion that a 

deficit in the neural systems subserving emotions and feelings may be the source of this 

choice pattern (Bechara et al., 1999; Damasio, 1994). “Feeling” the pleasure of gain, or 

the pain of loss, may be dependent on neural processes within the right insular and 

somatosensory cortices (Damasio, 1994). Patients with RSIC lesions can generate 

physiological responses to gains and losses, but their subjective ratings of how good or 

bad they felt when they won or lost is severely reduced (Bechara et al., 1999). Perhaps 

this feeling deficit translates into a cognitive deficit, in that the subjects may never learn 

how to win because they never “care” about winning. As such, the subject would adopt a 

simple “win-stay” or “lose-shift” strategy in all decks, thus producing a tendency to 
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oscillate between alternatives. Consequently, performers do not learn to choose the better 

decks.  

In summary, the results of the analysis using our cognitive model show that rather 

than a single common decision making deficit, poor choices tend to be associated with 

different component processes which reflect the continuous influence of attention to 

gains and losses, the degree of recency, and response sensitivity. Cognitive neuroscience 

is just beginning to unravel the brain mystery of human decision-making. In the past, the 

predominant approach to studying this complex function has focused on specific 

component processes of decision-making, such as learning reversal, working memory, 

and other executive functions. Unfortunately, this approach did not lead to a satisfactory 

understanding, for example, of the decision-making impairments observed in patients 

with VMPC lesions (Bechara et al., 1994). One successful attempt in capturing key 

aspects of human decision-making and its disorder was the use of complex laboratory 

tasks, such as the Iowa gambling task, that mimics real-life choices in the way it factors 

reward and punishment, and the uncertainties of their occurrence. This has led to the 

revival of old interest in the relationship between emotion and cognition. Although the 

Iowa gambling task succeeded in capturing many of the critical elements of decision-

making that were missed by the component process approach, the relative complexity of 

this task still prohibits a finer resolution of its underlying neural processes. However, the 

cognitive model described in this study provides a novel way for circumventing this 

problem, thus building a new bridge between cognitive neuroscience and complex human 

behaviors.  
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Figure 1: Left – A screen-shot from the computerized version of the The Iowa gambling task. Right – the available alternatives in their 
task and their outcomes. In the illustration on the right hand side the top two decks (A,B) are disadvantageous and the bottom two (C, 
D) are advantageous. Note that as in the example on the left, gains and losses can occur simultaneously on the same trial.

Decision

A

B

C

D

Win $100 every card
0.5 probability of losing $250 

Win $100 every card
0.1 probability of losing $1,250 

Win $50 every card
0.5 probability of losing $50

Win $50 every card
0.1 probability of losing $250
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Figure 2: Mapping of studied populations according to the differences in attention to loss/gain parameter and recency parameter 
compared to controls (averages and standard errors of the difference). The volume of bubbles is proportional to the difference in the 
choice consistency parameter. The red ring around bubbles denotes the zero difference boundary (bubbles smaller than the ring 
denote populations with low sensitivity). The table at the bottom right side presents the percent of positive G2 values, indicating an 
improvement of the adaptive learning model over the baseline model, and the results of significance tests for the different parameters.

RSIC 

 
Samples (left to right) Sample (n) Controls (n) %G2>0 p<.05 
Asperger’s syndrome    15      14   66% W , c 
RSIC lesion   22      12   62% c 
Parkinson’s disease   20      33   75%*  
Young Polydrug abusers   39      37   49%  
Young Alcohol abusers   27      32   67%*  
VMPC lesion   21      12   76%* φ, c 
Normal Seniors   63      87   61%* W, c 
Huntington’s disease   14      33   75%*  
Chronic Cannabis abusers   25      16   24% φ, W 
Chronic Cocaine abusers   12      14   69%* W 

 

 * = p<. 05 in a binomial test ;  -sig. after 150 trials. 


